- 自定义分析器
- 创建自定义分析器
自定义分析器
虽然 Elasticsearch 内置了一系列的分析器,但是真正的强大之处在于定制你自己的分析器。你可以通过在配置文件中组合字符过滤器,分词器和标记过滤器,来满足特定数据的需求。
在 【分析器介绍】 中,我们提到 分析器 是三个顺序执行的组件的结合(字符过滤器,分词器,标记过滤器)。
字符过滤器
字符过滤器是让字符串在被分词前变得更加“整洁”。例如,如果我们的文本是 HTML 格式,它可能会包含一些我们不想被索引的 HTML 标签,诸如
<p>
或<div>
。我们可以使用
html_strip
字符过滤器 来删除所有的 HTML 标签,并且将 HTML 实体转换成对应的 Unicode 字符,比如将Á
转成Á
。一个分析器可能包含零到多个字符过滤器。
分词器
一个分析器 必须 包含一个分词器。分词器将字符串分割成单独的词(terms)或标记(tokens)。
standard
分析器使用standard
分词器将字符串分割成单独的字词,删除大部分标点符号,但是现存的其他分词器会有不同的行为特征。例如,
keyword
分词器输出和它接收到的相同的字符串,不做任何分词处理。[whitespace
分词器]只通过空格来分割文本。[pattern
分词器]可以通过正则表达式来分割文本。
标记过滤器
分词结果的 标记流 会根据各自的情况,传递给特定的标记过滤器。
标记过滤器可能修改,添加或删除标记。我们已经提过
lowercase
和stop
标记过滤器,但是 Elasticsearch 中有更多的选择。stemmer
标记过滤器将单词转化为他们的根形态(root form)。ascii_folding
标记过滤器会删除变音符号,比如从très
转为tres
。ngram
和edge_ngram
可以让标记更适合特殊匹配情况或自动完成。
在【深入搜索】中,我们将举例介绍如何使用这些分词器和过滤器。但是首先,我们需要阐述一下如何创建一个自定义分析器
创建自定义分析器
与索引设置一样,我们预先配置好 es_std
分析器,我们可以再 analysis
字段下配置字符过滤器,分词器和标记过滤器:
PUT /my_index
{
"settings": {
"analysis": {
"char_filter": { ... custom character filters ... },
"tokenizer": { ... custom tokenizers ... },
"filter": { ... custom token filters ... },
"analyzer": { ... custom analyzers ... }
}
}
}
作为例子,我们来配置一个这样的分析器:
用
html_strip
字符过滤器去除所有的 HTML 标签将
&
替换成and
,使用一个自定义的mapping
字符过滤器
"char_filter": {
"&_to_and": {
"type": "mapping",
"mappings": [ "&=> and "]
}
}
使用
standard
分词器分割单词使用
lowercase
标记过滤器将词转为小写用
stop
标记过滤器去除一些自定义停用词。
"filter": {
"my_stopwords": {
"type": "stop",
"stopwords": [ "the", "a" ]
}
}
根据以上描述来将预定义好的分词器和过滤器组合成我们的分析器:
"analyzer": {
"my_analyzer": {
"type": "custom",
"char_filter": [ "html_strip", "&_to_and" ],
"tokenizer": "standard",
"filter": [ "lowercase", "my_stopwords" ]
}
}
用下面的方式可以将以上请求合并成一条:
PUT /my_index
{
"settings": {
"analysis": {
"char_filter": {
"&_to_and": {
"type": "mapping",
"mappings": [ "&=> and "]
}},
"filter": {
"my_stopwords": {
"type": "stop",
"stopwords": [ "the", "a" ]
}},
"analyzer": {
"my_analyzer": {
"type": "custom",
"char_filter": [ "html_strip", "&_to_and" ],
"tokenizer": "standard",
"filter": [ "lowercase", "my_stopwords" ]
}}
}}}
创建索引后,用 analyze
API 来测试新的分析器:
GET /my_index/_analyze?analyzer=my_analyzer
The quick & brown fox
下面的结果证明我们的分析器能正常工作了:
{
"tokens" : [
{ "token" : "quick", "position" : 2 },
{ "token" : "and", "position" : 3 },
{ "token" : "brown", "position" : 4 },
{ "token" : "fox", "position" : 5 }
]
}
除非我们告诉 Elasticsearch 在哪里使用,否则分析器不会起作用。我们可以通过下面的映射将它应用在一个 string
类型的字段上:
PUT /my_index/_mapping/my_type
{
"properties": {
"title": {
"type": "string",
"analyzer": "my_analyzer"
}
}
}