• 10.6 Git 内部原理 - 传输协议
    • 传输协议
      • 哑协议
      • 智能协议
        • 上传数据
          • SSH
          • HTTP(S)
      • 下载数据
        • SSH
        • HTTP(S)
  • 协议总结

    10.6 Git 内部原理 - 传输协议

    传输协议

    Git 可以通过两种主要的方式在版本库之间传输数据:“哑(dumb)”协议和“智能(smart)”协议。本节将会带你快速浏览这两种协议的运作方式。

    哑协议

    如果你正在架设一个基于 HTTP 协议的只读版本库,一般而言这种情况下使用的就是哑协议。这个协议之所以被称为“哑”协议,是因为在传输过程中,服务端不需要有针对 Git 特有的代码;抓取过程是一系列 HTTP 的 GET 请求,这种情况下,客户端可以推断出服务端 Git 仓库的布局。

    |
    Note
    |

    现在已经很少使用哑协议了。使用哑协议的版本库很难保证安全性和私有化,所以大多数 Git 服务器宿主(包括云端和本地)都会拒绝使用它。一般情况下都建议使用智能协议,我们会在后面进行介绍。

    让我们通过 simplegit 版本库来看看 http-fetch 的过程:

    1. $ git clone http://server/simplegit-progit.git

    它做的第一件事就是拉取 info/refs 文件。这个文件是通过 update-server-info 命令生成的,这也解释了在使用HTTP传输时,必须把它设置为 post-receive 钩子的原因:

    1. => GET info/refs
    2. ca82a6dff817ec66f44342007202690a93763949 refs/heads/master

    现在,你得到了一个远程引用和 SHA-1 值的列表。接下来,你要确定 HEAD 引用是什么,这样你就知道在完成后应该被检出到工作目录的内容:

    1. => GET HEAD
    2. ref: refs/heads/master

    这说明在完成抓取后,你需要检出 master 分支。这时,你就可以开始遍历处理了。因为你是从 info/refs 文件中所提到的 ca82a6 提交对象开始的,所以你的首要操作是获取它:

    1. => GET objects/ca/82a6dff817ec66f44342007202690a93763949
    2. (179 bytes of binary data)

    你取回了一个对象——这是一个在服务端以松散格式保存的对象,是你通过使用静态 HTTP GET 请求获取的。你可以使用 zlib 解压缩它,去除其头部,查看提交记录的内容:

    1. $ git cat-file -p ca82a6dff817ec66f44342007202690a93763949
    2. tree cfda3bf379e4f8dba8717dee55aab78aef7f4daf
    3. parent 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7
    4. author Scott Chacon <schacon@gmail.com> 1205815931 -0700
    5. committer Scott Chacon <schacon@gmail.com> 1240030591 -0700
    6. changed the version number

    接下来,你还要再获取两个对象,一个是树对象 cfda3b,它包含有我们刚刚获取的提交对象所指向的内容,另一个是它的父提交 085bb3

    1. => GET objects/08/5bb3bcb608e1e8451d4b2432f8ecbe6306e7e7
    2. (179 bytes of data)

    这样就取得了你的下一个提交对象。再抓取树对象:

    1. => GET objects/cf/da3bf379e4f8dba8717dee55aab78aef7f4daf
    2. (404 - Not Found)

    噢——看起来这个树对象在服务端并不以松散格式对象存在,所以你得到了一个 404 响应,代表在 HTTP 服务端没有找到该对象。这有好几个可能的原因——这个对象可能在替代版本库里面,或者在包文件里面。Git 会首先检查所有列出的替代版本库:

    1. => GET objects/info/http-alternates
    2. (empty file)

    如果这返回了一个包含替代版本库 URL 的列表,那么 Git 就会去那些地址检查松散格式对象和文件——这是一种能让派生项目共享对象以节省磁盘的好方法。然而,在这个例子中,没有列出可用的替代版本库。所以你所需要的对象肯定在某个包文件中。要检查服务端有哪些可用的包文件,你需要获取 objects/info/packs 文件,这里面有一个包文件列表(它也是通过执行 update-server-info 所生成的):

    1. => GET objects/info/packs
    2. P pack-816a9b2334da9953e530f27bcac22082a9f5b835.pack

    服务端只有一个包文件,所以你要的对象显然就在里面。但是你要先检查它的索引文件以确认。即使服务端有多个包文件,这也是很有用的,因为这样你就可以知道你所需要的对象是在哪一个包文件里面:

    1. => GET objects/pack/pack-816a9b2334da9953e530f27bcac22082a9f5b835.idx
    2. (4k of binary data)

    现在你有这个包文件的索引,你可以查看你要的对象是否在里面——因为索引文件列出了这个包文件所包含的所有对象的 SHA-1 值,和该对象存在于包文件中的偏移量。你的对象就在这里,接下来就是获取整个包文件:

    1. => GET objects/pack/pack-816a9b2334da9953e530f27bcac22082a9f5b835.pack
    2. (13k of binary data)

    现在你也有了你的树对象,你可以继续在提交记录上漫游。它们全部都在这个你刚下载的包文件里面,所以你不用继续向服务端请求更多下载了。Git 会将开始时下载的 HEAD 引用所指向的 master 分支检出到工作目录。

    智能协议

    哑协议虽然很简单但效率略低,且它不能从客户端向服务端发送数据。智能协议是更常用的传送数据的方法,但它需要在服务端运行一个进程,而这也是 Git 的智能之处——它可以读取本地数据,理解客户端有什么和需要什么,并为它生成合适的包文件。总共有两组进程用于传输数据,它们分别负责上传和下载数据。

    上传数据

    为了上传数据至远端,Git 使用 send-packreceive-pack 进程。运行在客户端上的 send-pack 进程连接到远端运行的 receive-pack 进程。

    SSH

    举例来说,在项目中使用命令 git push origin master 时, origin 是由基于 SSH 协议的 URL 所定义的。Git 会运行 send-pack 进程,它会通过 SSH 连接你的服务器。它会尝试通过 SSH 在服务端执行命令,就像这样:

    1. $ ssh -x git@server "git-receive-pack 'simplegit-progit.git'"
    2. 00a5ca82a6dff817ec66f4437202690a93763949 refs/heads/master report-status \
    3. delete-refs side-band-64k quiet ofs-delta \
    4. agent=git/2:2.1.1+github-607-gfba4028 delete-refs
    5. 0000

    git-receive-pack 命令会立即为它所拥有的每一个引用发送一行响应——在这个例子中,就只有 master 分支和它的 SHA-1 值。第一行响应中也包含了一个服务端能力的列表(这里是 report-statusdelete-refs 和一些其它的,包括客户端的识别码)。

    每一行以一个四位的十六进制值开始,用于指明本行的长度。你看到第一行以 005b 开始,这在十六进制中表示 91,意味着第一行有 91 字节。下一行以 003e 起始,也就是 62,所以下面需要读取 62 字节。再下一行是 0000,表示服务端已完成了发送引用列表过程。

    现在它知道了服务端的状态,你的 send-pack 进程会判断哪些提交记录是它所拥有但服务端没有的。send-pack 会告知 receive-pack 这次推送将会更新的各个引用。举个例子,如果你正在更新 master 分支,并且增加 experiment 分支,这个 send-pack 的响应将会是像这样:

    1. 0076ca82a6dff817ec66f44342007202690a93763949 15027957951b64cf874c3557a0f3547bd83b3ff6 \
    2. refs/heads/master report-status
    3. 006c0000000000000000000000000000000000000000 cdfdb42577e2506715f8cfeacdbabc092bf63e8d \
    4. refs/heads/experiment
    5. 0000

    Git 会为每一个将要更新的引用发送一行数据,包括该行长度,旧 SHA-1 值,新 SHA-1 值和将要更新的引用。第一行也包括了客户端的能力。这里的全为 0 的 SHA-1 值表示之前没有过这个引用——因为你正要添加新的 experiment 引用。删除引用时,将会看到相反的情况:右边的 SHA-1 值全为 0

    接下来,客户端会发送一个包文件,它包含了所有服务端还没有的对象。最后,服务端会以成功(或失败)响应:

    1. 000eunpack ok
    HTTP(S)

    HTTPS 与 HTTP 相比较,除了在“握手”过程略有不同外,其他基本相似。连接是从下面这个请求开始的:

    1. => GET http://server/simplegit-progit.git/info/refs?service=git-receive-pack
    2. 001f# service=git-receive-pack
    3. 00ab6c5f0e45abd7832bf23074a333f739977c9e8188 refs/heads/master report-status \
    4. delete-refs side-band-64k quiet ofs-delta \
    5. agent=git/2:2.1.1~vmg-bitmaps-bugaloo-608-g116744e
    6. 0000

    这完成了客户端和服务端的第一次数据交换。接下来客户端发起另一个请求,这次是一个 POST 请求,这个请求中包含了 git-upload-pack 提供的数据。

    1. => POST http://server/simplegit-progit.git/git-receive-pack

    这个 POST 请求的内容是 send-pack 的输出和相应的包文件。服务端在收到请求后相应地作出成功或失败的 HTTP 响应。

    下载数据

    当你在下载数据时, fetch-packupload-pack 进程就起作用了。客户端启动 fetch-pack 进程,连接至远端的 upload-pack 进程,以协商后续传输的数据。

    SSH

    如果你通过 SSH 使用抓取功能,fetch-pack 会像这样运行:

    1. $ ssh -x git@server "git-upload-pack 'simplegit-progit.git'"

    fetch-pack 连接后,upload-pack 会返回类似下面的内容:

    1. 00dfca82a6dff817ec66f44342007202690a93763949 HEAD multi_ack thin-pack \
    2. side-band side-band-64k ofs-delta shallow no-progress include-tag \
    3. multi_ack_detailed symref=HEAD:refs/heads/master \
    4. agent=git/2:2.1.1+github-607-gfba4028
    5. 003fe2409a098dc3e53539a9028a94b6224db9d6a6b6 refs/heads/master
    6. 0000

    这与 receive-pack 的响应很相似,但是这里所包含的能力是不同的。而且它还包含 HEAD 引用所指向内容(symref=HEAD:refs/heads/master),这样如果客户端执行的是克隆,它就会知道要检出什么。

    这时候,fetch-pack 进程查看它自己所拥有的对象,并响应 “want” 和它需要的对象的 SHA-1 值。它还会发送“have”和所有它已拥有的对象的 SHA-1 值。在列表的最后,它还会发送“done”以通知 upload-pack 进程可以开始发送它所需对象的包文件:

    1. 003cwant ca82a6dff817ec66f44342007202690a93763949 ofs-delta
    2. 0032have 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7
    3. 0009done
    4. 0000
    HTTP(S)

    抓取操作的握手需要两个 HTTP 请求。第一个是向和哑协议中相同的端点发送 GET 请求:

    1. => GET $GIT_URL/info/refs?service=git-upload-pack
    2. 001e# service=git-upload-pack
    3. 00e7ca82a6dff817ec66f44342007202690a93763949 HEAD multi_ack thin-pack \
    4. side-band side-band-64k ofs-delta shallow no-progress include-tag \
    5. multi_ack_detailed no-done symref=HEAD:refs/heads/master \
    6. agent=git/2:2.1.1+github-607-gfba4028
    7. 003fca82a6dff817ec66f44342007202690a93763949 refs/heads/master
    8. 0000

    这和通过 SSH 使用 git-upload-pack 是非常相似的,但是第二个数据交换则是一个单独的请求:

    1. => POST $GIT_URL/git-upload-pack HTTP/1.0
    2. 0032want 0a53e9ddeaddad63ad106860237bbf53411d11a7
    3. 0032have 441b40d833fdfa93eb2908e52742248faf0ee993
    4. 0000

    这个输出格式还是和前面一样的。这个请求的响应包含了所需要的包文件,并指明成功或失败。

    协议总结

    这一章节是传输协议的一个概貌。传输协议还有很多其它的特性,像是 multi_ackside-band,但是这些内容已经超出了本书的范围。我们希望能给你展示客户端和服务端之间的基本交互过程;如果你需要更多的相关知识,你可以参阅 Git 的源代码。

    prev | next

    原文: https://git-scm.com/book/zh/v2/Git-%E5%86%85%E9%83%A8%E5%8E%9F%E7%90%86-%E4%BC%A0%E8%BE%93%E5%8D%8F%E8%AE%AE